MyAppleMenu Reader

Friday, February 12, 2016

Gravitational Waves Exist: The Inside Story Of How Scientists Finally Found Them, by Nicola Twilley, New Yorker

Just over a billion years ago, many millions of galaxies from here, a pair of black holes collided. They had been circling each other for aeons, in a sort of mating dance, gathering pace with each orbit, hurtling closer and closer. By the time they were a few hundred miles apart, they were whipping around at nearly the speed of light, releasing great shudders of gravitational energy. Space and time became distorted, like water at a rolling boil. In the fraction of a second that it took for the black holes to finally merge, they radiated a hundred times more energy than all the stars in the universe combined. They formed a new black hole, sixty-two times as heavy as our sun and almost as wide across as the state of Maine. As it smoothed itself out, assuming the shape of a slightly flattened sphere, a few last quivers of energy escaped. Then space and time became silent again.

The waves rippled outward in every direction, weakening as they went. On Earth, dinosaurs arose, evolved, and went extinct. The waves kept going. About fifty thousand years ago, they entered our own Milky Way galaxy, just as Homo sapiens were beginning to replace our Neanderthal cousins as the planet’s dominant species of ape. A hundred years ago, Albert Einstein, one of the more advanced members of the species, predicted the waves’ existence, inspiring decades of speculation and fruitless searching. Twenty-two years ago, construction began on an enormous detector, the Laser Interferometer Gravitational-Wave Observatory (LIGO). Then, on September 14, 2015, at just before eleven in the morning, Central European Time, the waves reached Earth. Marco Drago, a thirty-two-year-old Italian postdoctoral student and a member of the LIGO Scientific Collaboration, was the first person to notice them. He was sitting in front of his computer at the Albert Einstein Institute, in Hannover, Germany, viewing the LIGO data remotely. The waves appeared on his screen as a compressed squiggle, but the most exquisite ears in the universe, attuned to vibrations of less than a trillionth of an inch, would have heard what astronomers call a chirp—a faint whooping from low to high. This morning, in a press conference in Washington, D.C., the LIGO team announced that the signal constitutes the first direct observation of gravitational waves.

Inside The Eye: Nature’s Most Exquisite Creation, by Ed Yong, National Geographic

The box jellyfish’s eyes are part of an almost endless variation of eyes in the animal kingdom. Some see only in black and white; others perceive the full rainbow and beyond, to forms of light invisible to our eyes. Some can’t even gauge the direction of incoming light; others can spot running prey miles away. The smallest animal eyes, adorning the heads of fairy wasps, are barely bigger than an amoeba; the biggest are the size of dinner plates, and belong to gigantic squid species. The squid’s eye, like ours, works as a camera does, with a single lens focusing light onto a single retina, full of photoreceptors—cells that absorb photons and convert their energy into an electrical signal. By contrast, a fly’s compound eye divides incoming light among thousands of separate units, each with its own lens and photoreceptors. Human, fly, and squid eyes are mounted in pairs on their owners’ heads. But scallops have rows of eyes along their mantles, sea stars have eyes on the tips of their arms, and the purple sea urchin’s entire body acts as one big eye. There are eyes with bifocal lenses, eyes with mirrors, and eyes that look up, down, and sideways all at the same time.

At one level, such diversity is puzzling. All eyes detect light, and light behaves in a predictable manner. But it has a multitude of uses. Light reveals the time of day, the depth of water, the presence of shade. It bounces off enemies, mates, and shelter. The box jellyfish uses it to find safe pastures. You use it to survey landscapes, interpret facial expressions, and read these words. The variety of tasks that eyes perform is limited only by the fecundity of nature. They represent a collision between the constancy of physics and the messiness of biology. To understand how eyes evolved, scientists need to do more than examine their structures. They need to do what Nilsson did with the box jellyfish: understand how animals use their eyes.

Pretentiousness By Dan Fox Review – Why Anti-intellectualism Is The Real Snobbery, by Steven Poole, The Guardian

The most important contribution of Fox’s argument, perhaps, is his claim that what really deserves to be damned as pretentiousness is not an aiming-up but an aiming-down. “Anti-intellectualism,” he notes, “is a snobbery … The anti-intellectual is often anxious not to be marked as part of an educated elite.” And it is inverse snobbery in all its guises that might deserve to be called pretentious in a bad way.

Getting Married In One Week Was The Most Romantic Thing I Ever Did, by Meaghan O'Connell, New York Magazine

When it was established that we had a week to get hitched, for visa purposes, a little thrill passed over me. There was no dread with it, no abstraction. We were getting married and there was no time for emotional turmoil, for deep Googling, for dispiriting dress searches or arguments over the guest list. We’d spend a few hundred bucks at most ($500, somehow, in the end) and then it would be done. Time now became a creative constraint, how much we could do with how little. This I could handle. Maybe.

Mother’s Day, by George Saunders